Graph wavelets API documentation¶
diffusion_wavelets ¶
diffusion_wavelets(T, n_scales)
Compute diffusion wavelet filter bank
Computes diffusion wavelets from from input diffusion matrix. Implementation based off the algorithm originally described in Coifman et. al 2006.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
T |
torch.Tensor
|
Input diffusion matrix computed from adjacency matrix |
required |
n_scales |
int
|
Number of scales to use in wavelet transform |
required |
Returns:
Name | Type | Description |
---|---|---|
phi |
torch.Tensor
|
wavelet filter bank |
Source code in gsxform/wavelets.py
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
|
tighthann_wavelets ¶
tighthann_wavelets(W_adj, n_scales, kernel)
Computes spectrum adapted tight Hann wavelets. Based of algorithm described in Shuman et. al 2015.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
W_adj |
torch.Tensor
|
Input batch of adjacency matricies |
required |
n_scales |
int
|
Number of scales to use in wavelet transform |
required |
kernel |
TightHannKernel
|
Adaptive kernel used in wavelet transform. |
required |
Returns:
Name | Type | Description |
---|---|---|
psi |
torch.Tensor
|
wavelet filter bank |
Source code in gsxform/wavelets.py
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
|